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Bifurcations and transitions to chaos in an inverted pendulum
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We consider a parametrically forced pendulum with a vertically oscillating suspension point. It is well
known that, as the amplitude of the vertical oscillation is increased, its inverted state~corresponding to the
vertically-up configuration! undergoes a cascade of ‘‘resurrections,’’ i.e., it becomes stabilized after its insta-
bility, destabilize again, and so forthad infinitum. We make a detailed numerical investigation of the bifurca-
tions associated with such resurrections of the inverted pendulum by varying the amplitude and frequency of
the vertical oscillation. It is found that the inverted state stabilizes via alternating ‘‘reverse’’ subcritical pitch-
fork and period-doubling bifurcations, while it destabilizes via alternating ‘‘normal’’ supercritical period-
doubling and pitchfork bifrucations. An infinite sequence of period-doubling bifurcations, leading to chaos,
follows each destabilization of the inverted state. The critical behaviors in the period-doubling cascades are
also discussed.@S1063-651X~98!03809-4#

PACS number~s!: 05.45.1b, 03.20.1i, 05.70.Jk
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I. INTRODUCTION

We consider a parametrically forced pendulum, the s
pension point of which undergoes a vertical periodic osci
tion. The system is described by a second-order nonaut
mous ordinary differential equation@1#,

I ü1bu̇1ml~g2ev2cosvt !sinu50, ~1!

where the overdot denotes the differentiation with respec
time, I is the total moment of inertia,b is a damping coeffi-
cient,m is a mass attached to one end of a light rigid rod~its
mass can be negligible! of lengthl , u is the angular displace
ment measured counterclockwise from the downward ve
cal, ande andv are the driving amplitude and frequency
the vertical oscillation of the suspension point, respective
Making the normalizationvt→2pt andu→2px, we obtain
a dimensionless normalized form of Eq.~1!,

ẍ12pbV ẋ12p~V22Acos2pt !sin2px50, ~2!

wherev05Amgl/I , b5b/Iv0, V5v0 /v, andA5mle/I .
The parametrically forced pendulum has two station

states. One is the ‘‘normal’’ state corresponding to the v
tically down configuration withx50, and the other one is
the ‘‘inverted’’ state corresponding to the vertically up co
figuration withx5 1

2 . For the case of the ‘‘unforced’’ simple
pendulum~with A50), the normal state is obviously stabl
while the inverted state is clearly unstable. However, as
normalized driving amplitudeA is increased above a critica
value, the inverted state becomes stable. This stabilizatio
the inverted pendulum has been discussed theoretically@2–8#
and demonstrated experimentally@9–11#.

Here we are interested in the bifurcations associated w
the stability of the inverted state. As in the case of the norm
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state@12#, the linear stability of the inverted state is dete
mined by a damped Mathieu equation@13#,

ü12pbVu̇14p2~2V21Acos2pt !u50. ~3!

It is well known that the Mathieu equation has an infinity
alternating stable and unstableA ranges for a givenV @14#.
Consequently, as the parameterA is increased, the inverted
pendulum exhibits a cascade of ‘‘resurrections’’~i.e., it be-
comes stabilized after its instability, destabilizes again and
forth ad infinitum! for any givenV. By varying the normal-
ized driving amplitudeA and the normalized natural fre
quencyV, we make a detailed numerical investigation
bifurcation behaviors associated with such resurrections
the inverted pendulum for a fixed value of the normaliz
damping coefficientb.

This paper is organized as follows. In Sec. II, we discu
bifurcations associated with the stability of periodic orbi
using the Floquet theory@15#. The bifurcation behaviors as
sociated with the resurrections of the inverted state are t
investigated through numerical calculations of its Floqu
~stability! multipliers in Sec. III for the caseb50.2. It is
found that the stabilizations of the inverted state occur
alternating ‘‘reverse’’ subcritical pitchfork and period
doubling bifurcations, while its destabilizations take pla
through alternating ‘‘normal’’ supercritical period-doublin
and pitchfork bifrucations. After each destabilization of t
inverted state, an infinite sequence of period-doubling bif
cations follows and leads to chaos. In Sec. IV, we also st
the critical behaviors in the period-doubling cascades.
nally, a summary is given in Sec. V.

II. STABILITY, BIFURCATIONS, LYAPUNOV
EXPONENTS, AND WINDING NUMBERS

In this section, we first discuss stability of periodic orb
in the Poincare´ map of the parametrically forced pendulum
using the Floquet theory@15#. Bifurcations associated with
3028 © 1998 The American Physical Society
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PRE 58 3029BIFURCATIONS AND TRANSITIONS TO CHAOS IN AN . . .
the stability, Lyapunov exponents, and winding numbers
then discussed.

The second-order ordinary differential equation~2! is re-
duced to two first-order ordinary differential equations:

ẋ5y, ~4a!

ẏ5 f ~x,y,t !522pbVy22p~V22Acos2pt !sin2px.
~4b!

These equations have the~space! inversion symmetryS, be-
cause the transformation

S:x→2x, y→2y, t→t ~5!

leaves Eq.~4! invariant. If an orbitz(t)@[„x(y),y(t)…# is
invariant underS, it is called a symmetric orbit. Otherwise,
is called an asymmetric orbit and has its ‘‘conjugate’’ or
Sz(t).

The surface of section for the parametrically forced p
dulum is the Poincare´ ~time-1) map. Hence the Poincar´
maps of an initial pointz0 @5(x0 ,y0)# can be computed by
sampling the orbit pointszm at the discrete timet5m (m
51,2,3,. . . ). We call the transformationzm→zm11 the
Poincare´ map and writezm115P(zm).

The linear stability of aq-periodic orbit of P such that
Pq(z0)5z0 is determined from the linearized-map matr
DPq of Pq at an orbit pointz0. HerePq means theq-times
iterated map. Using the Floquet theory@15#, the matrixDPq

can be obtained by integrating the linearized differen
equations for small perturbations as follows.

Let z* (t)5z* (t1q) be a solution lying on the close
orbit corresponding to theq-periodic orbit. In order to deter
mine the stability of the closed orbit, we consider an infi
tesimal perturbationdz@5(u,v)# to the closed orbit. Linear-
izing Eq. ~4! about the closed orbit, we obtain

S u̇

v̇
D 5J~ t !S u

v D , J~ t !5S 0 1

f x~x* ,t ! f y
D . ~6!

Here f x and f y denote the partial derivatives off (x,y,t) in
Eq. ~4! with respect to the variablesx and y, respectively.
They are given by

f x~x,t !524p2~V22Acos2pt !cos2px, f y522pbV.
~7!

Note that J is a 232 q-periodic matrix. Let W(t)
5„w1(t),w2(t)… be a fundamental solution matrix wit
W(0)5I . Herew1(t) and w2(t) are two independent solu
tions expressed in column vector forms, andI is the 232
unit matrix. Then a general solution of theq-periodic system
has the following form:

S u~ t !

v~ t !
D 5W~ t !S u~0!

v~0!
D . ~8!

Substitution of Eq.~8! into Eq. ~6! leads to an initial-value
problem to determineW(t)

Ẇ~ t !5J~ t !W~ t !, W~0!5I . ~9!
re

-

l

-

It is clear from Eq.~8! that W(q) is just the linearized-map
matrix DPq(z0). Hence the matrixDPq can be obtained
through integration of Eq.~9! over the periodq.

The characteristic equation of the linearized-map ma
M ([DPq) is

l22trMl1detM50, ~10!

where trM and detM denote the trace and determinant ofM ,
respectively. The eigenvalues,l1 andl2, of M are called the
Floquet ~stability! multipliers. As shown in@16#, detM is
calculated from a formula

detM5e*0
qtrJdt. ~11!

Substituting the trace ofJ ~i.e., trJ522pbV) into Eq.~11!,
we obtain an exact analytic result

detM5e22pbVq. ~12!

~Note that detM is a constant, independently of the orbits!
Accordingly, the pair of Floquet multipliers of a periodi
orbit with periodq lies either on the circle of radiuse2pbVq

or on the real axis in the complex plane. The periodic orbi
stable only when both Floquet multipliers lie inside the u
circle. We first note that they never cross the unit circ
except at the real axis and hence Hopf bifurcations do
occur. Consequently, a stable periodic orbit can lose its
bility when a Floquet multiplier decreases~increases!
through 21 (1) on the real axis; conversely, an unstab
periodic orbit can gain its stability when a Floquet multipli
increases~decreases! through21 (1) on the real axis.

When a Floquet multiplierl decreases through21, the
stable periodic orbit loses its stability via period-doublin
bifurcation. On the other hand, when a Floquet multiplierl
increases through 1, it becomes unstable via pitchfork bi
cation. For each case of the period-doubling and pitchf
bifurcations, two types of supercritical and subcritical bifu
cations occur. For the supercritical case of the peri
doubling and pitchfork bifurcations, the stable periodic or
loses its stability and gives rise to the birth of a new sta
period-doubled orbit and a pair of new stable orbits with t
same period, respectively. On the other hand, for the s
critical case of the period-doubling and pitchfork bifurc
tions, the stable periodic orbit becomes unstable by abs
ing an unstable period-doubled orbit and a pair of unsta
orbits with the same period, respectively. Hereafter, all th
bifurcations, associated with instability of a stable period
orbit, will be called the ‘‘normal’’ bifurcations. We also not
that reverse processes of the normal bifurcations can o
for the case of unstable orbits. That is, when a Floquet m
tiplier of an unstable orbit increases~decreases! through
21 (1), it becomes stabilized via ‘‘reverse’’ period
doubling ~pitchfork! bifurcations. For example, for the re
verse subcritical period-doubling and pitchfork bifurcation
the unstable orbit gains its stability by emitting an unsta
period-doubled orbit and a pair of unstable orbits with t
same period, respectively. For more details, refer to R
@17#.

We now discuss the Lyapunov exponent and the wind
number of an orbit in the Poincare´ map P. Expressing the
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3030 PRE 58SANG-YOON KIM AND BAMBI HU
linearized equations~6! for the displacements in terms of th
polar coordinatesu5rcosf andv5rsinf, we have

ṙ 5r @~11 f x!sinfcosf1 f ysin2f#,

ḟ52sin2f1~ f xcosf1 f ysinf!cosf. ~13!

The motions of the displacements (r ,f) contain all the in-
formation about the nearby orbits. Hence we first obtain
Poincare´ maps of an initial displacement (r 0 ,f0) by sam-
pling the displacements (r m ,fm) at the discrete timet5m
(m51,2,3,. . . ). Then the average exponential rate
growth of the radiusr ,

s5 lim
m→`

1

m
ln

r m

r 0
, ~14!

gives the largest Lyapunov exponents, characterizing the
average exponential rate of divergence of the nearby or
If s is positive, then the orbit is called a chaotic orbit; ot
erwise, it is called a regular orbit. On the other hand,
average rate of increase of the anglef ~normalized by the
factor 2p),

w5 lim
m→`

ufm2f0u
2pm

, ~15!

gives the winding numberw, characterizing the average ro
tation number of the nearby orbits during the time 1~i.e., one
iteration ofP). For more details on the Lyapunov expone
and the winding number, refer to Ref.@18#.

III. BIFURCATIONS OF THE INVERTED STATE
AND TRANSITIONS TO CHAOS

In this section, by varying the two parametersA andV,
we study bifurcations associated with stability of the inver
state for a damped case ofb50.2. It is well known from the
theory of the Mathieu equation@14# that there exist an infin-
ity of disconnected stability regions in theV2A plane~i.e.,
an infinity of alternating stable and unstableA ranges exist
for any givenV). Consequently, asA is increased, the in-
verted state undergoes a cascade of resurrections~i.e., it sta-
bilizes after its instability, destabilizes again, and so forthad
infinitum! for any givenV. We make a detailed numerica
investigation of bifurcation behaviors associated with su
resurrections of the inverted state.

As explained in Sec. II, the linear stability of a period
orbit with periodq in the Poincare´ mapP is determined from
the linearized-map matrixM ([DPq) of Pq. The matrixM
can be obtained through numerical integration of Eq.~9!
over the periodq, and then its eigenvalues give the Floqu
multipliers of the periodic orbit. In such a way, we determi
the stability regions of the inverted state in theV2A plane
through numerical calculations of its Floquet multipliersl ’s.
The first three stability regions, denoted bySn (n51,2,3),
are shown in Fig. 1. EachSn is bounded by its lower stabi
lization curve, denoted byLn , and by its upper destabiliza
tion curve, denoted byUn . As the ordern is increased, the
stability regionSn becomes smaller.

We investigate bifurcation behaviors associated with
e

ts.

e

t

d

h

t

e

stabilizations and destabilizations of the inverted state at
stability boundary curves in detail. It is found that they d
pend on whether the ordern of the stability regionSn is odd
or even. At the stabilization curvesLn of odd ~even! n, the
unstable inverted state becomes stable via reverse pitch
~period-doubling! bifurcations. However, the situation be
comes the reverse for the case of the destabilization cu
Un . That is, the stabilized inverted state loses its stabi
through normal period-doubling~pitchfork! bifurcations
when the destabilization curves of odd~even! n are crossed.
These period-doubling and pitchfork bifurcation curves a
denoted by the solid and dashed curves in Fig. 1, resp
tively. There are two types of supercritical and subcritic
bifurcations for the case of the period-doubling and pitchfo
bifurcations, as explained in Sec. II. All the stabilizatio
occur via the subcritical bifurcations, while all the destab
zations take place through the supercritical bifurcatio
Consequently, with increasingA the inverted state stabilize
via alternating reverse subcritical pitchfork and perio
doubling bifurcations, while it destabilizes through altern
ing normal supercritical period-doubling and pitchfork bifu
cations. After each destabilization of the inverted state,
infinite sequence of period-doubling bifurcations, leading
chaos, also follows and ends at a finite accumulation po

FIG. 1. Stability diagram of the inverted state in the parame
cally forced pendulum. The first three stability regions of the
verted state, denoted bySn (n51,2,3), are shown in~a! and ~b!.
For eachSn , a period-doubling bifurcation occurs on the sol
boundary curve, while a pitchfork bifurcation takes place on
dashed boundary curve. The lower and upper bifurcation curvesLn

andUn , are also labeled by the winding numbersv of the inverted
state asLn(v) and Un(v), respectively. The accumulation poin
of an infinite sequence of period-doubling bifurcations, denoted
solid circles, seem to lie on the smooth critical lines. For oth
details, see the text.
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We obtain such accumulation points for several values oV
(V50.001, 0.05, 0.1, 0.15, 0, 2). They are denoted by s
circles in Fig. 1 and seem to lie on smooth critical line
When crossing these critical lines, period-doubling tran
tions to chaos occur.

The lower and upper bifurcation curves,Ln and Un , in
Fig. 1 are also labeled by the winding numbersv of the
inverted state asLn(v) andUn(v), respectively. We obtain
the winding numberv of the inverted state through numer
cal integration of the linearized equation~13! over period 1.
It is known that, for the pitchfork bifurcations, the windin
numbers of the inverted state become integers, while they
odd multiples of 1/2 for the period-doubling bifurcation
@18#. Note that the winding numberv of the inverted state
increases with respect to the ordern of the bifurcation
curves.

We now present the concrete examples of bifurcati
associated with the resurrections of the inverted state for
caseV50.1. The bifurcation diagrams and the phase-fl
and Poincare´-map plots are also given for clear presentat
of the bifurcations. We first investigate the bifurcation b
haviors associated with the first resurrection of the inver
state with increasingA. For the unforced case ofA50, the
inverted state is clearly unstable. However, when the lo
stabilization curveL1 of the first stability regionS1 is
crossed at the first stabilization point As(1)
50.142 066. . . , theunstable inverted state becomes sta
lized via reverse subcritical pitchfork bifurcation. The bifu
cation diagram near the first resurrection of the inverted s
is shown in Fig. 2~a!. Through the reverse subcritical pitch
fork bifurcation, a conjugate pair of unstable asymmetric
bits with period 1 appears, and their phase portraits foA
50.15 are shown in Fig. 2~b!. However, when the uppe
destabilization curveU1 of S1 is crossed at the first destab
lization point Ad(1)50.471 156. . . , thestabilized inverted
state loses its stability via normal supercritical perio
doubling bifurcation. Consequently, a stable period-doub
symmetric orbit appears and its phase portrait forA50.5 is
also shown in Fig. 2~c!. Note that the winding numberv of
the inverted state increases from 0 to 1/2, asA is changed
from As(1) to Ad(1). Wealso study the subsequent bifurc
tions with increasingA further. Unlike the case of the in
verted state, the symmetric 2-periodic orbit becomes
stable by a symmetry-breaking pitchfork bifurcation, whi
leads to the birth of a conjugate pair of stable asymme
orbits with period 2. Then each 2-periodic orbit with brok
symmetry undergoes an infinite sequence of period-doub
bifurcations, ending at its accumulation pointA1*
(50.575 154. . . ). Consequently, a period-doubling trans
tion to chaos occurs when the parameterA increases through
A1* . The critical scaling behaviors of period doublings ne
the critical pointA1* are the same as those for the 1D ma
as will be seen in Sec. IV.

With a further increase ofA, we also study the bifurca
tions associated with the second resurrection of the inve
state. Since the order ofS2 is even, the types of bifurcation
associated with the stabilization and destabilization beco
different from those for the case of the first resurrectio
When the lower stabilization curveL2 of S2 is crossed at the
second stabilization pointAs(2) (53.779 771. . . ), a re-
d
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verse subcritical period-doubling bifurcation occurs, which
in contrast to the case of the first resurrection. Conseque
the unstable inverted state stabilizes with the birth of a n
unstable symmetric orbit with period 2. Figure 3~a! shows
the bifurcation diagram in the vicinity of this second resu
rection. The phase portrait of the newly born unstable sy
metric 2-periodic orbit forA53.783 is also shown in Fig
3~b!. However, when the upper destabilization curveU2 of
S2 is crossed at the second destabilization pointAd(2)
53.811 973. . . , anormal supercritical pitchfork bifurcation
occurs, which is also in contrast to the case of the first
stabilization. As a result, the stable inverted state destabil
with the birth of a conjugate pair of stable asymmetric orb
of period 1. The phase portraits of the newly-born sta
asymmetric orbits with period 1 forA53.815 are shown in
Fig. 3~c!. Note that the winding numberv also increases
from 1/2 to 1, asA is varied fromAs(2) to Ad(2). As A is

FIG. 2. ~a! Bifurcation diagram~plot of x vs A) in the vicinity
of the first resurrection of the inverted state. Here the solid a
dashed lines denote stable and unstable orbits, respectively, aq
denotes the period of an orbit.~b! Phase portraits forA50.15. The
stabilized inverted state is denoted by the solid circle. On the o
hand, the phase flows of a conjuate pair of unstable orbits w
period 1 born via reverse subcritical pitchfork bifurcation are d
noted by dashed curves, and their Poincare´ maps are represented b
the crosses.~c! Phase portraits forA50.5. The destabilized inverted
state is denoted by the cross. On the other hand, the phase flow
stable orbit with period 2 born via normal supercritical perio
doubling bifurcation is denoted by a solid curve, and its Poinc´
maps are represented by the solid circles.
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further increased, a second infinite sequence of per
doubling bifurcations, leading to chaos, also follows a
ends at its accumulation pointA2* (53.829 784. . . ). The
critical scaling behaviors of period doublings nearA5A2*
are the same as those near the first accumulation pointA1* .

Finally, we investigate the bifurcations associated w
the third resurrection of the inverted state. The types of
furcations associated with the stabilization and destabil
tion become the same as those for the case of the first re
rection, because the order ofS3 is odd. As shown in Fig.
4~a!, the unstable inverted state stabilizes with the birth o
conjugate pair of unstable asymmetric orbits with period
via reverse subcritical pitchfork bifurcation at the third s
bilization point As(3) (510.671 579. . . ) on thelower sta-
bilization curveL3. As A is increased, the stable inverte
state also destabilizes with the birth of a stable peri
doubled symmetric orbit through a normal supercritic
period-doubling bifurcation at the third destabilization po

FIG. 3. ~a! Bifurcation diagram near the second resurrection
the inverted state. The solid and dashed lines andq represent the
same as those as in Fig. 1.~b! Phase portraits forA53.783. The
stabilized inverted state is denoted by the solid circle. On the o
hand, the phase flow of an unstable orbit with period 2 born
reverse subcritical period-doubling bifurcation is denoted by
dashed curve, and its Poincare´ maps are represented by the cross
~c! Phase portraits forA53.815. The destabilized inverted state
designated by the cross. On the other hand, the phase flows
conjugate pair of stable asymmetric orbits with period 1 born
normal supercritical pitchfork bifurcation are denoted by so
curves, and their Poincare´ maps are represented by the solid circle
d-

i-
-

ur-

a

-

-
l
t

Ad(3) (510.673 818. . . ) on theupper destabilization curve
U3. The phase portraits of the newly-born orbits for t
cases of the stabilization and destabilization are shown
Figs. 4~b! and 4~c! for A510.6718 and 10.6741, respe
tively. We also note that, asA is changed fromAs(3) to
Ad(3), thewinding numberv increases from 1 to 3/2. Sinc
the winding number of the inverted state increases, its nea
orbits have an increasing number of loops@e.g., compare
Figs. 4~b! and 4~c! with Figs. 2~b! and 2~c!#. The subsequen
bifurcation behaviors are also the same as those for the a
first case. Consequently, a third infinite sequence of per
doubling bifurcations, leading to chaos, follows and ends
its accumulation pointA3* (510.675 090. . . ). Thecritical
scaling behaviors of period doublings are also the same
those nearA1* .

IV. CRITICAL BEHAVIORS IN THE PERIOD-DOUBLING
CASCADES

In this section, we first investigate the winding-numb
sequence of the period-doubling cascade and find that
winding numbers at the period-doubling bifurcation poin
constitute an alternating sequence converging to a li

f

er
a
a
.

f a
a

.

FIG. 4. ~a! Bifurcation diagram near the third resurrection of th
inverted state. The solid and dashed lines andq denote the same a
those in Fig. 1. Note that the bifurcation behaviors associated w
the stabilization and destabilization of the inverted state are
same as in Fig. 1. The phase portraits of the orbits associated
the stabilization and destabilization are shown in~b! and ~c! for A
510.6718 and 10.6741, respectively. For other details see the
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value, as in other oscillators@18#. The orbital scaling behav
ior and the power spectra of the periodic orbits born
period-doubling bifurcations as well as the parameter sca
behaviors are then investigated. These critical scaling be
iors for all cases studied are found to be the same as tho
the 1D maps@19#.

As an example, we consider the caseV50.1. The first
three accumulation pointsAi* ’s ( i 51,2,3) of the period-
doubling bifurcations are shown in Fig. 1. Only the critic
behaviors at the first accumulation pointA1* are given below,
because the critical behaviors at all the three accumula
points are the same. For this first case, we follow the perio
orbits of period 2k up to levelk58. As explained in Sec. III,
the stabilized inverted state loses its stability forA5Ad(1)
through a normal supercritical period-doubling bifurcatio
giving rise to the birth of a stable period-doubled symme
orbit. However, this symmetric 2-periodic orbit becomes u
stable via symmetry-breaking pitchfork bifurcation, whic
results in the birth of a conjugate pair of asymmetric orb
with period 2. Then each 2-periodic orbit with broken sym
metry undergoes an infinite sequence of period-doubling
furcations, ending at its accumulation pointA1* . Therefore, a
period-doubling transition to chaos takes place when the
rameterA increases throughA1* .

Figure 5~a! shows the bifurcation diagram of the fir
period-doubling cascade.@For the sake of convenience, on
one asymmetric orbit of period 2 is shown in Fig. 5~a!.# The
largest Lyapunov exponents and the winding numberv in
the period-doubling cascade are also given in Figs. 5~b! and
5~c!, respectively. The largest Lyapunov exponent has a c
stant value (52pbV) when the Floquet multipliersl ’s lie
on the circle of radiuse2pbVq ~in the complex plane!, while
it changes smoothly whenl ’s lie on the real axis. The value
of s becomes zero at each period-doubling bifurcation po
Unlike the case ofs, the winding numberv takes a constan
rational value whenl ’s lie on the real axis, and hence it ca
change only whenl ’s lie on the circle of radiuse2pbVq.
Consequently,v(A) becomes a steplike function. Ration
steps appear near the period-doubling bifurcation points
shown in Fig. 5~c!. The sequence of the winding-numb
steps is given byvk5 1

6 @12(21)k/2k# k51, 2, . . .!; the
first three values~corresponding tok51, 2, and 3! are given
in Fig. 5~c!. Note that the winding numbers constitute
alternating sequence converging to its limit valuev`

(1)

(51/6). Consequently, the quasiperiodic attractor at the
accumulation pointA1* has the winding numberv`

(1) . We
also study the winding-number sequences in the second
third period-doubling cascades. They are given byvk
5 1

3 @21(21)k/2k# andvk5 1
6 @72(21)k/2k#, respectively.

As in the first case, these alternating sequences also conv
to their limit valuesv`

(2) (52/3) andv`
(3) (57/6). Hence,

the quasiperiodic attractors at the second and third accu
lation pointsA2* and A3* have their winding numbersv`

(2)

andv`
(3) , respectively. Note that the winding numbersv`

( i )

of the quasiperiodic attractors at the accumulation pointsAi*
increase withi .

Table I gives theA values at which the period-doublin
bifurcations occur; atAk , a Floquet multiplier of an asym
metric orbit with period 2k becomes21. The sequence o
g
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Ak converges geometrically to its limit valueA1* with an
asymptotic ratiod:

dk5
Ak2Ak21

Ak112Ak
→d. ~16!

The sequence ofdk is also listed in Table I. Note that its
limit value d (.4.7) agrees well with that (54.669•••) for

FIG. 5. ~a! Bifurcation diagram@plot of x vs 2 ln(A1*2A)# of the
first period-doubling cascade,~b! plot of the largest Lyapunov ex
ponents vs 2 ln(A1*2A), and~c! plot of the winding numberv vs
2 ln(A1*2A) for V50.1. Here (q, s, or a) denotes the stableA
range of the symmetric or asymmetric orbit with periodq.

TABLE I. Asymptotically geometric convergence of the param
eter sequence$Ak%.

k Ak dk

1 0.573 847 671 035
2 0.574 992 231 118 8.26
3 0.575 130 862 947 7.25
4 0.575 149 971 647 5.68
5 0.575 153 335 892 4.78
6 0.575 154 039 822 4.65
7 0.575 154 191 110 4.69
8 0.575 154 223 350
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the 1D maps @19#. We also obtain the value ofA1*
(50.575 154 232. . . ) by superconverging the sequence
$Ak% @20#.

As in the 1D maps, we are also interested in the orb
scaling behavior near the most rarified region. Hence we
locate the most rarified region by choosing an orbit pointz(k)

@5(x(k),y(k))# that has the largest distance from its near
orbit point P2k21

(z(k)) for A5Ak . The two sequences$x(k)%
and$y(k)%, listed in Table II, converge geometrically to the
limit values x* and y* with the 1D asymptotic ratioa
(522.502•••), respectively:

ax,k5
x~k!2x~k21!

x~k11!2x~k!→a, ay,k5
y~k!2y~k21!

y~k11!2y~k!→a.

~17!

The values of x* (50.350 686. . . ) and y*
(50.014 623. . . ) arealso obtained by superconverging th
sequences ofx(k) andy(k), respectively.

We finally study the power spectra of the 2k-periodic or-
bits at the period-doubling bifurcation pointsAk . Consider
the orbit of level k whose period is q52k, $zm

(k)

5(xm
(k) ,ym

(k)), m50,1, . . . ,q21%. Then its Fourier compo-
nent of this 2k-periodic orbit is given by

z~k!~v j !5
1

q (
m50

q21

zm
~k!e2 iv jm, ~18!

wherev j52p j /q, and j 50,1, . . . ,q21. The power spec-
trum P(k)(v j ) of level k defined by

P~k!~v j !5uz~k!~v j !u2 ~19!

has discrete peaks atv5v j . In the power spectrum of the
next (k11) level, new peaks of the (k11)th generation ap-
pear at odd harmonics of the fundamental frequency,v j

52p(2 j 11)/2(k11) ( j 50, . . . ,2k21). To classify the con-
tributions of successive period-doubling bifurcations in t
power spectrum of levelk, we write

P~k!5P00d~v!1(
l 51

k

(
j 50

2~ l 21!21

Pl j
~k!d~v2v l j !, ~20!

wherePl j
(k) is the height of thej th peak of thel th generation

appearing atv5v l j ([2p(2 j 11)/2l). As an example, we

TABLE II. Asymptotically geometric convergence of the orbit
sequences$x(k)% and$y(k)%.

k x(k) ax,k y(k) ay,k

1 0.356 951 938 0.014 184 290
2 0.349 165 197 24.016 0.014 680 027 26.189
3 0.351 104 216 23.547 0.014 599 925 22.709
4 0.350 557 529 23.078 0.014 629 491 23.543
5 0.350 735 119 22.608 0.014 621 145 22.409
6 0.350 667 034 22.509 0.014 624 610 22.615
7 0.350 694 173 22.502 0.014 623 285 22.448
8 0.350 683 324 0.014 623 826
l
st

t

consider the power spectrumP(8)(v) of level 8 shown in
Fig. 6. The average height of the peaks of thel th generation
is given by

f~k!~ l !5
1

2~ l 21! (
j 50

2l 2121

Pl j
~k! . ~21!

It is of interest whether or not the sequence of the ratios
the successive average heights

2b~k!~ l !5f~k!~ l !/f~k!~ l 11!, ~22!

converges. The ratios are listed in Table III. They seem
approach a limit value, 2b.21, which also agrees well with
that (520.96•••) for the 1D maps@21#.

V. SUMMARY

We carried out a detailed investigation of bifurcations a
sociated with resurrections of the inverted state through
merical calculations of its Floquet multipliers. It was foun
that its stabilizations occur via alternating reverse subcrit
pitchfork and period-doubling bifurcations, while its destab
lizations take place through alternating normal supercriti

FIG. 6. Power spectrumP(8)(v) of level 8 for A5A8

(50.575 154 223 350).

TABLE III. Sequence 2b (k)( l ) @[f (k)( l )/f (k)( l 11)# of the
ratios of the successive average heights of the peaks in the p
spectra

k l
4 5 6 7

6 34.7 24.6
7 34.0 24.5 21.7
8 33.9 24.0 21.7 21.5
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period-doubling and pitchfork bifurcations. An infinite s
quence of period-doubling bifurcations, leading to cha
also follows each destabilization of the inverted state. T
orbital and parameter scaling behaviors near the accum
tion points Ai* of the period-doubling cascades are a
found to be the same as those of the 1D maps, although
winding numbersv`

( i ) of the quasiperiodic attractors at th
accumulation points increase withi .
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