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Bifurcations and transitions to chaos in an inverted pendulum
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We consider a parametrically forced pendulum with a vertically oscillating suspension point. It is well
known that, as the amplitude of the vertical oscillation is increased, its inverted(staitesponding to the
vertically-up configurationundergoes a cascade of “resurrections,” i.e., it becomes stabilized after its insta-
bility, destabilize again, and so fortid infinitum We make a detailed numerical investigation of the bifurca-
tions associated with such resurrections of the inverted pendulum by varying the amplitude and frequency of
the vertical oscillation. It is found that the inverted state stabilizes via alternating “reverse” subcritical pitch-
fork and period-doubling bifurcations, while it destabilizes via alternating “normal” supercritical period-
doubling and pitchfork bifrucations. An infinite sequence of period-doubling bifurcations, leading to chaos,
follows each destabilization of the inverted state. The critical behaviors in the period-doubling cascades are
also discussedS1063-651X98)03809-4

PACS numbsgs): 05.45+b, 03.20+i, 05.70.Jk

I. INTRODUCTION state[12], the linear stability of the inverted state is deter-

We consider a parametrically forced pendulum, the Sus[mned by a damped Mathieu equatipts],

pension point of which undergoes a vertical periodic oscilla-
tion. The system is described by a second-order nonautono-
mous ordinary differential equatidr],

U+27BAQuU+47%(— Q2+ Acos2rt)u=0. 3)

It is well known that the Mathieu equation has an infinity of
alternating stable and unstatderanges for a giverf) [14].
Consequently, as the parameteiis increased, the inverted
endulum exhibits a cascade of “resurrectionge., it be-
omes stabilized after its instability, destabilizes again and so

1 9+bo+ml(g— ew?coswt)sind=0, 1)

where the overdot denotes the differentiation with respect t@

time, | is the total moment of inertid is a damping coeffi- f S . X
. . ; 2 orth ad infinitun) for any given(). By varying the normal-
cient,m is a mass attached to one end of a light rigid (it ized driving amplitudeA and the normalized natural fre-

mass can be negligijlef lengthl, ¢is the angular displace- guency (), we make a detailed numerical investigation of
?a?n;rr]r:jea::(;ed;c;utr::rg:%(i:ﬁw;en f:ﬁtrﬂjéhgngof\;\énvlﬁr:cVirft'bifurcation behaviors associated with such resurrections of

' € @ G g ampiit . q Y Ol the inverted pendulum for a fixed value of the normalized
the vertical oscillation of the suspension point, respectively

. L . damping coefficienp.
Mal_<|ng th_e normallzat|or_mt—>27rt andd—2arx, we obtain This paper is organized as follows. In Sec. I, we discuss
a dimensionless normalized form of Hg),

bifurcations associated with the stability of periodic orbits,
. . ) using the Floquet theoryl5]. The bifurcation behaviors as-
X+ 27 BAX+ 27 (02— Acos2rt)sin2mx=0, 2 sociated with the resurrections of the inverted state are then
investigated through numerical calculations of its Floquet
wherewo=ymgl/l, B=b/lwg, A=wq/w, andA=mle/l.  (stability) multipliers in Sec. Il for the cas@=0.2. It is
The parametrically forced pendulum has two stationaryfound that the stabilizations of the inverted state occur via
states. One is the “normal” state corresponding to the veralternating ‘“reverse” subcritical pitchfork and period-
tically down configuration withx=0, and the other one is doubling bifurcations, while its destabilizations take place
the “inverted” state corresponding to the vertically up con- through alternating “normal” supercritical period-doubling
figuration withx= 3. For the case of the “unforced” simple and pitchfork bifrucations. After each destabilization of the
pendulum(with A=0), the normal state is obviously stable, inverted state, an infinite sequence of period-doubling bifur-
while the inverted state is clearly unstable. However, as theations follows and leads to chaos. In Sec. IV, we also study
normalized driving amplitudd is increased above a critical the critical behaviors in the period-doubling cascades. Fi-
value, the inverted state becomes stable. This stabilization efally, a summary is given in Sec. V.
the inverted pendulum has been discussed theoret{@H§|
and demonstrated experimental8~11].
Here we are interested in the bifurcations associated with
the stability of the inverted state. As in the case of the normal

II. STABILITY, BIFURCATIONS, LYAPUNOV
EXPONENTS, AND WINDING NUMBERS

In this section, we first discuss stability of periodic orbits
in the Poincaremap of the parametrically forced pendulum,
*Electronic address: sykim@cc.kangwon.ac.kr using the Floquet theor}l5]. Bifurcations associated with
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the stability, Lyapunov exponents, and winding numbers ardt is clear from Eq.(8) thatW(q) is just the linearized-map

then discussed. matrix DPY(zy). Hence the matriXDP9 can be obtained
The second-order ordinary differential equati@ is re-  through integration of Eq9) over the period.
duced to two first-order ordinary differential equations: The characteristic equation of the linearized-map matrix
. M(=DP9) is
X=Y, (43
A2—trMA+detM =0, (10)

y=f(x,y,t)= —27BQYy— 2mw(Q2— Acos2rt)sin2mx. _
(4b)  Where tM and deM denote the trace and determinani\f

respectively. The eigenvalues, and\,, of M are called the
These equations have tfgpace inversion symmetns, be-  Floquet (stability) multipliers. As shown in[16], deM is
cause the transformation calculated from a formula

SX——X, y—-y, t—t (5) deﬂ\/l=efg‘”dt. (11)
leaves Eq.(4) invariant. If an orbitz(t)[ =(x(y),y(t))] is
invariant undes, it is called a symmetric orbit. Otherwise, it
is called an asymmetric orbit and has its “conjugate” orbit
Sqt). _ o 27pQ

The surface of section for the parametrically forced pen- det =e~ =770, (12
dulum is the Poincarétime-1) map. Hence the Poincare
maps of an initial poinky [ =(Xg,Y)] can be computed by
sampling the orbit pointg,, at the discrete time¢=m (m
=1,2,3,...). We call the transformationz,,—z,.1 the
Poincaremap and writez,,, ;= P(z).

The linear stability of ag-periodic orbit of P such that
P9(zp) =z, is determined from the linearized-map matrix
DPY of P9 at an orbit pointz,. Here P9 means they-times
iterated map. Using the Floquet thedfyb], the matrixD P4
can be obtained by integrating the linearized differential
equations for small perturbations as follows.

Let z*(t)=z*(t+q) be a solution lying on the closed
orbit corresponding to thg-periodic orbit. In order to deter-
mine the stability of the closed orbit, we consider an infini-
tesimal perturbatiodz[ = (u,v)] to the closed orbit. Linear-

Substituting the trace af (i.e., td=—27BQ) into Eq.(11),
we obtain an exact analytic result

(Note that de¥l is a constant, independently of the orbits.
Accordingly, the pair of Floquet multipliers of a periodic
orbit with periodq lies either on the circle of radius 5?4

or on the real axis in the complex plane. The periodic orbit is
stable only when both Floquet multipliers lie inside the unit
circle. We first note that they never cross the unit circle,
except at the real axis and hence Hopf bifurcations do not
occur. Consequently, a stable periodic orbit can lose its sta-
bility when a Floquet multiplier decrease6ncreases
through —1 (1) on the real axis; conversely, an unstable
periodic orbit can gain its stability when a Floquet multiplier
increasegdecreasesthrough—1 (1) on the real axis.

When a Floquet multiplien decreases through 1, the
stable periodic orbit loses its stability via period-doubling
o . . bifurcation. On the other hand, when a Floquet multipNer
izing Eq. (4) about the closed orbit, we obtain increases through 1, it becomes unstable via pitchfork bifur-

: cation. For each case of the period-doubling and pitchfork

( u) =J(t)( u) ()= 1) 6) bifurcations, two types of supercritical and subcritical bifur-

v v’ f(x*,t) fy)° cations occur. For the supercritical case of the period-

doubling and pitchfork bifurcations, the stable periodic orbit
Here f, andf, denote the partial derivatives &(x,y,t) in loses its stability and gives rise to the birth of a new stable
Eq. (4) with respect to the variables andy, respectively. period-doubled orbit and a pair of new stable orbits with the

They are given by same period, respectively. On the other hand, for the sub-
critical case of the period-doubling and pitchfork bifurca-
f(X,t)=—4mw2(Q%— Acos2mt)cos2mXx, fy=—2mpQ. tions, the stable periodic orbit becomes unstable by absorb-

(7)  ing an unstable period-doubled orbit and a pair of unstable
) o ) orbits with the same period, respectively. Hereafter, all these
Note thatJ is a 2x2 g-periodic matrix. Let W(t) pifurcations, associated with instability of a stable periodic
=(w*(t),w*(t)) be a fundamental solution matrix with orhit, will be called the “normal” bifurcations. We also note
W(0)=1. Herew'(t) andw?(t) are two independent solu- that reverse processes of the normal bifurcations can occur

tions expressed in column vector forms, dné the 2X2  for the case of unstable orbits. That is, when a Floquet mul-
doubling (pitchfork) bifurcations. For example, for the re-
u(t) W u(0)
=WI(t
o]~
period-doubled orbit and a pair of unstable orbits with the
We now discuss the Lyapunov exponent and the winding

unit matrix. Then a general solution of theperiodic system  tiplier of an unstable orbit increasdslecreasesthrough
) verse subcritical period-doubling and pitchfork bifurcations,
Substitution of Eq(8) into Eq. (6) leads to an initial-value same period, respectively. For more details, refer to Ref.
W(t)=J(t)W(t), W(0)=1I. (9 number of an orbit in the Poincaraap P. Expressing the

has the following form: —1 (1), it becomes stabilized via “reverse” period-
the unstable orbit gains its stability by emitting an unstable
problem to determin&V(t) [17].
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linearized equation&) for the displacements in terms of the 06 | ' T . 1
polar coordinatesi=rcosp andv =rsing, we have P @ . °
r=r[(1+f,)sinpcosp+f sirt 4], 0.4 T//—

. - S -3

¢=—sirP¢+ (f,cosp+ f,sing)cosp. (13) <.l ‘ ? |
The motions of the displacements, §) contain all the in- : — L(©)
formation about the nearby orbits. Hence we first obtain the ook ]
Poincaremaps of an initial displacement {,¢,) by sam- .
pling the displacements (,,¢,,) at the discrete tim¢=m 0.0 ' 01 ' 0.0
(m=1,2,3,...). Then the average exponential rate of Q
growth of the radiug,

1t 10.75
o= lim —In-", (14)
m— oo 0

10.70

gives the largest Lyapunov exponemt characterizing the
average exponential rate of divergence of the nearby orbits. <10-65=—
If o is positive, then the orbit is called a chaotic orbit; oth- 3.8
erwise, it is called a regular orbit. On the other hand, the
average rate of increase of the angle(normalized by the
factor 21r),

| pm— ol 0.0 ' 0.1 0.2
—_ Q
2mm ' (19

FIG. 1. Stability diagram of the inverted state in the parametri-
gives the winding numbew, characterizing the average ro- cally forced pendulum. The first three stability regions of the in-
tation number of the nearby orbits during the timé.&., one ~ Verted state, denoted , (n=1,2,3), are shown itta) and (b).

iteration of P). For more details on the Lyapunov exponent For eachS,, a period-doubling bifurcation occurs on the solid
and the winding number, refer to R¢L8]. boundary curve, while a pitchfork bifurcation takes place on the

dashed boundary curve. The lower and upper bifurcation cubyes,

andU,,, are also labeled by the winding numberf the inverted

state ad ,(w) andU,(w), respectively. The accumulation points

of an infinite sequence of period-doubling bifurcations, denoted by

solid circles, seem to lie on the smooth critical lines. For other
ddetails, see the text.

w= |im

m—oe

lll. BIFURCATIONS OF THE INVERTED STATE
AND TRANSITIONS TO CHAOS

In this section, by varying the two parametérsand (2,
we study bifurcations associated with stability of the inverte
state for a damped case gf=0.2. It is well known from the  stabilizations and destabilizations of the inverted state at the
theory of the Mathieu equatidri4] that there exist an infin-  stability boundary curves in detail. It is found that they de-
ity of disconnected stability regions in tif¢—A plane(i.e.,  pend on whether the orderof the stability regiorS, is odd
an infinity of alternating stable and unstalfleranges exist or even. At the stabilization curvas, of odd (even n, the
for any given(}). Consequently, aé is increased, the in- unstable inverted state becomes stable via reverse pitchfork
verted state undergoes a cascade of resurredi@sit sta-  (period-doubling bifurcations. However, the situation be-
bilizes after its instability, destabilizes again, and so fath comes the reverse for the case of the destabilization curves
infinitum) for any given(). We make a detailed numerical U, . That is, the stabilized inverted state loses its stability
investigation of bifurcation behaviors associated with suchhrough normal period-doubling(pitchfork) bifurcations
resurrections of the inverted state. when the destabilization curves of o@even) n are crossed.

As explained in Sec. Il, the linear stability of a periodic These period-doubling and pitchfork bifurcation curves are
orbit with periodq in the PoincarenapP is determined from  denoted by the solid and dashed curves in Fig. 1, respec-
the linearized-map matriM(=DPY) of P9. The matrixM tively. There are two types of supercritical and subcritical
can be obtained through numerical integration of E®).  bifurcations for the case of the period-doubling and pitchfork
over the periody, and then its eigenvalues give the Floguethifurcations, as explained in Sec. Il. All the stabilizations
multipliers of the periodic orbit. In such a way, we determineoccur via the subcritical bifurcations, while all the destabili-
the stability regions of the inverted state in the-A plane  zations take place through the supercritical bifurcations.
through numerical calculations of its Floquet multipliars.  Consequently, with increasing the inverted state stabilizes
The first three stability regions, denoted By (n=1,2,3), via alternating reverse subcritical pitchfork and period-
are shown in Fig. 1. EacB, is bounded by its lower stabi- doubling bifurcations, while it destabilizes through alternat-
lization curve, denoted bl ,, and by its upper destabiliza- ing normal supercritical period-doubling and pitchfork bifur-
tion curve, denoted by ,. As the ordem is increased, the cations. After each destabilization of the inverted state, an
stability regionS, becomes smaller. infinite sequence of period-doubling bifurcations, leading to

We investigate bifurcation behaviors associated with thechaos, also follows and ends at a finite accumulation point.
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We obtain such accumulation points for several value§ of L
(2=0.001, 0.05, 0.1, 0.15, 0, 2). They are denoted by solid 0.6 @ ‘/<—Q=1 .
circles in Fig. 1 and seem to lie on smooth critical lines. ) q=2 ]
When crossing these critical lines, period-doubling transi- *x 05 -+ - —
tions to chaos occur. - 1
The lower and upper bifurcation curvds, andU,,, in 0.4 ‘\\ i
Fig. 1 are also labeled by the winding numbessof the LA R R B
inverted state ak,(w) andU,(w), respectively. We obtain 01 02 03 04 05
the winding numbek of the inverted state through numeri- A
cal integration of the linearized equati¢h3) over period 1.
It is known that, for the pitchfork bifurcations, the winding 0.08 Loy, ]
numbers of the inverted state become integers, while they are 004 b 1 \\ !/ \‘ i
odd multiples of 1/2 for the period-doubling bifurcations 5 I.' : P
[18]. Note that the winding numben of the inverted state > 0.00 =% ! . i
increases with respect to the order of the bifurcation 0.04 [ .
curves. Rl V]
We now present the concrete examples of bifurcations 008 b— 1 4 1 17
associated with the resurrections of the inverted state for the 040 045 050 055 0.60
case()=0.1. The bifurcation diagrams and the phase-flow X
and Poincarenap plots are also given for clear presentation
of the bifurcations. We first investigate the bifurcation be- L L L
haviors associated with the first resurrection of the inverted 0.2 (- -
state with increasing\. For the unforced case &=0, the - .
inverted state is clearly unstable. However, when the lower > 0.0 | i
stabilization curvel, of the first stability regionS; is | i
crossed at the first stabilization pointAg(1) o2 | ]
=0.142 066 . ., theunstable inverted state becomes stabi- ' Dol d

lized via reverse subcritical pitchfork bifurcation. The bifur- 040 045 050 055 060

cation diagram near the first resurrection of the inverted state ' ' v ' '

is shown in Fig. 2a). Through the reverse subcritical pitch- _ _ _ _ o

fork bifurcation, a conjugate pair of unstable asymmetric or- FIG. 2. (a) Bifurcation diagram(plot of x vs A) in the vicinity

bits with period 1 appears, and their phase portraitsAor Of the first resurrection of the inverted state. Here the solid and
=0.15 are shown in Fig. (B). However, when the upper dashed lines denote stable and unstable orbits, respectively and
destabilization curvéJ, of S, is crossed at the first destabi- denotes the period of an orbib) Phase portraits foA=0.15. The
lization pointA4(1)=0.471 156 thestabilized inverted Stabilized inverted state is denoted by the solid circle. On the other
state loses its stability via nor,mal supercritical period-hand' the phase flows of a conjuate pair of unstable orbits with
doubling bifurcation. Conseguently. a stable period-doubled®od 1 born via reverse subcritical pitchfork bifurcation are de-
s mme’?ric orbit a .ears ang its >r/1'ase OI"[I’aFi)'[AGfO 5is noted by dashed curves, and their Poinaasps are represented by
a)I/so shown in Figp%:) Note that Fhe Win%ing numbe;ti of the crossedc) Phase portraits foh=0.5. The destabilized inverted

. : . state is denoted by the cross. On the other hand, the phase flow of a
the inverted state increases from 0 to 1/2,Aas changed stable orbit with period 2 born via normal supercritical period-

from Ag(1) to Aq(1). Wealso study the subsequent bifurca- youpling bifurcation is denoted by a solid curve, and its Poincare
tions with increasingA further. Unlike the case of the in- maps are represented by the solid circles.
verted state, the symmetric 2-periodic orbit becomes un-

stable by a symmetry-breaking pitchfork bifurcation, whichyerse subcritical period-doubling bifurcation occurs, which is
leads to the birth of a conjugate pair of stable asymmetrign contrast to the case of the first resurrection. Consequently,
orbits with period 2. Then each 2-periodic orbit with brokenthe unstable inverted state stabilizes with the birth of a new
symmetry undergoes an infinite sequence of period-doublingnstable symmetric orbit with period 2. FiguréaBshows
bifurcations, ending at its accumulation poinAT  the bifurcation diagram in the vicinity of this second resur-
(=0.575154..). Consequently, a period-doubling transi- rection. The phase portrait of the newly born unstable sym-
tion to chaos occurs when the parameéncreases through  metric 2-periodic orbit forA=3.783 is also shown in Fig.
AT . The critical scaling behaviors of period doublings near3(b). However, when the upper destabilization cutyg of
the critical pointA] are the same as those for the 1D maps,S, is crossed at the second destabilization poi(2)
as will be seen in Sec. IV. =3.811973. ., anormal supercritical pitchfork bifurcation
With a further increase of\, we also study the bifurca- occurs, which is also in contrast to the case of the first de-
tions associated with the second resurrection of the invertestabilization. As a result, the stable inverted state destabilizes
state. Since the order &, is even, the types of bifurcations with the birth of a conjugate pair of stable asymmetric orbits
associated with the stabilization and destabilization becomef period 1. The phase portraits of the newly-born stable
different from those for the case of the first resurrection.asymmetric orbits with period 1 foh=3.815 are shown in
When the lower stabilization cunde, of S, is crossed at the Fig. 3(c). Note that the winding numbe® also increases
second stabilization poinfg(2) (=3.779771..), a re- from 1/2to 1, asA is varied fromAg(2) to A4(2). AsA is
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FIG. 3. (a) Bifurcation diagram near the second resurrection of F1G- 4. () Bifurcation diagram near the third resurrection of the
the inverted state. The solid and dashed lines qnédpresent the ~INverted state. The solid and dashed lines qrtenote the same as
same as those as in Fig. (h) Phase portraits foA=3.783. The those in _F_lg. _1. Note that the_ _b|fu_rcat|on beh_awors associated with
stabilized inverted state is denoted by the solid circle. On the othei€ Stabilization and destabilization of the inverted state are the
hand, the phase flow of an unstable orbit with period 2 born viaS@Me s in Fig. 1. The phase portraits of the orbits associated with
reverse subcritical period-doubling bifurcation is denoted by ath€ Stabilization and destabilization are showr(bhand (c) for A
dashed curve, and its Poincaraps are represented by the crosses.= 10.6718 and 10.6741, respectively. For other details see the text.
(c) Phase portraits foA=3.815. The destabilized inverted state is
designated by the cross. On the other hand, the phase flows of&q¢(3) (=10.673 818..) on theupper destabilization curve
conjugate pair of stable asymmetric orbits with period 1 born viaU3. The phase portraits of the newly-born orbits for the
normal supercritical pitchfork bifurcation are denoted by solid cases of the stabilization and destabilization are shown in
curves, and their Poincareaps are represented by the solid circles. Figs. 4b) and 4c) for A=10.6718 and 10.6741, respec-

tively. We also note that, a8 is changed fromA¢(3) to
further increased, a second infinite sequence of perioda,(3), thewinding numberw increases from 1 to 3/2. Since
doubling bifurcations, leading to chaos, also follows andthe winding number of the inverted state increases, its nearby
ends at its accumulation poit; (=3.829784..). The orbits have an increasing number of loojEsg., compare
critical scaling behaviors of period doublings nefa A3 Figs. 4b) and 4c) with Figs. 2b) and Zc)]. The subsequent
are the same as those near the first accumulation pdint  bifurcation behaviors are also the same as those for the above

Finally, we investigate the bifurcations associated withfirst case. Consequently, a third infinite sequence of period-
the third resurrection of the inverted state. The types of bidoubling bifurcations, leading to chaos, follows and ends at
furcations associated with the stabilization and destabilizaits accumulation poinA3 (=10.675090..). Thecritical
tion become the same as those for the case of the first resugealing behaviors of period doublings are also the same as
rection, because the order 8 is odd. As shown in Fig. those neaA7 .

4(a), the unstable inverted state stabilizes with the birth of a

conjugate pair of unstable asymmetric orbits with period 1\, g icAL BEHAVIORS IN THE PERIOD-DOUBLING

via reverse subcritical pitchfork bifurcation at the third sta- CASCADES

bilization pointA4(3) (=10.671579..) on thelower sta-

bilization curvelLs. As A is increased, the stable inverted In this section, we first investigate the winding-number
state also destabilizes with the birth of a stable periodsequence of the period-doubling cascade and find that the
doubled symmetric orbit through a normal supercriticalwinding numbers at the period-doubling bifurcation points
period-doubling bifurcation at the third destabilization pointconstitute an alternating sequence converging to a limit
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value, as in other oscillatof4.8]. The orbital scaling behav- 0.75
ior and the power spectra of the periodic orbits born via
period-doubling bifurcations as well as the parameter scaling 0.60
behaviors are then investigated. These critical scaling behav-

iors for all cases studied are found to be the same as those of 0.45
the 1D mapg19].

As an example, we consider the cale=0.1. The first 0.30 ]
three accumulation point&*’s (i=1,2,3) of the period- 5 4 6 8 10
doubling bifurcations are shown in Fig. 1. Only the critical -In(A*-A)
behaviors at the first accumulation poki are given below, !
because the critical behaviors at all the three accumulation TN P L R B I
points are the same. For this first case, we follow the periodic e
orbits of period # up to levelk=8. As explained in Sec. Ill, -0.02 |-
the stabilized inverted state loses its stability for Ay(1) © .0.04 L
through a normal supercritical period-doubling bifurcation, L8l 29 | 2a) | 4a) |@a)
giving rise to the birth of a stable period-doubled symmetric -0.06 =
orbit. However, this symmetric 2-periodic orbit becomes un- 008t o v 10

stable via symmetry-breaking pitchfork bifurcation, which
results in the birth of a conjugate pair of asymmetric orbits
with period 2. Then each 2-periodic orbit with broken sym-
metry undergoes an infinite sequence of period-doubling bi-
furcations, ending at its accumulation poii . Therefore, a
period-doubling transition to chaos takes place when the pa-
rameterA increases throughy .

Figure 3a) shows the bifurcation diagram of the first
period-doubling cascadgFor the sake of convenience, only
one asymmetric orbit of period 2 is shown in Figap] The
largest Lyapunov exponeiat and the winding humbew in
the period-doubling cascade are also given in Figis) &nd
5(c), respectively. The largest Lyapunov exponent has a con-
stant value € — 7)) when the Floguet multipliers’s lie FIG. 5. (a) Bifurcation diagraniplot of x vs — In(A¥ —A)] of the
on the circle of radiug— ™84 (in the complex plang while first period-doubling cascadéy) plot of the largest Lyapunov ex-
it changes smoothly whex's lie on the real axis. The value ponento vs —In(Af —A), and(c) plot of the winding numbet vs
of o becomes zero at each period-doubling bifurcation point—In(A} —A) for Q=0.1. Here §, s, or a) denotes the stabl&
Unlike the case ofr, the winding numbew takes a constant range of the symmetric or asymmetric orbit with peripd
rational value when'’s lie on the real axis, and hence it can
change only when’s lie on the circle of radius™™?9. A, converges geometrically to its limit valud* with an
Consequentlyw(A) becomes a steplike function. Rational asymptotic ratios:
steps appear near the period-doubling bifurcation points, as
shown in Fig. %c). The sequence of the winding-number Av—A
steps is given byw,=3[1—(—1)%2¢] k=1, 2,...); the k-1
first three valuegcorresponding tk=1, 2, and 3 are given
in Fig. 5(c). Note that the winding numbers constitute an
alternating sequence converging to its limit valag® The sequence o, is also listed in Table |. Note that its
(=1/6). Consequently, the quasiperiodic attractor at the firsimit value & (=4.7) agrees well with that<£4.669 - -) for
accumulation poiniA*¥ has the winding numbes(!). We
also study the winding-number sequences in the second and TABLE I. Asymptotically geometric convergence of the param-
third period-doubling cascades. They are given by  eter sequenceA;.
=1[2+(-1)2 and w, =% [7—(—1)X/2X], respectively.
As in the first case, these alternating sequences also convergek A Sk

=590 16
KT A A (18

to their limit valuesw!® (=2/3) andw’® (=7/6). Hence, 1 0573 847 671 035
the quasiperiodic attractors at the second and third accumu- » 0.574 992 231 118 8.26
lation pointsA3 and A} have their winding numbers»ﬁf_) 3 0.575 130 862 947 7.95
and »'®, respectively. Note that the winding numbes$) 4 0.575 149 971 647 5.68
of the quasiperiodic attractors at the accumulation poAdts 5 0.575 153 335 892 4.78
increase with. 6 0.575 154 039 822 4.65
Table | gives theA values at which the period-doubling 7 0.575 154 191 110 4.69
bifurcations occur; af\,, a Floguet multiplier of an asym- 8 0.575 154 223 350

metric orbit with period # becomes—1. The sequence of
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TABLE Il. Asymptotically geometric convergence of the orbital 0 T T T T T T
sequence$x®} and{y®}.

k x® Ay k y(k) Qy I

1 0.356 951 938 0.014 184 290 5k 4

2 0.349165197 —4.016 0.014680027 —6.189

3 0.351104 216 —3.547 0.014599 925 —2.709 = i

4 0.350557529 —3.078 0.014 629491 —3.543 n-o

5 0.350 735119 —2.608 0.014 621 145 —2.409 g; 1oL ]

6 0.350667 034 —2.509 0.014624610 —2.615 -

7 0.350694 173 —2.502 0.014623285 —2.448

8 0.350 683 324 0.014 623 826 r

-15 |- —

the 1D maps[19]. We also obtain the value ofA}
(=0.575 154 232..) by superconverging the sequence of
{Ad [20]. 0 2 4 6

As in the 1D maps, we are also interested in the orbital ®

scaling behavior near the most rarified region. Hence we first
locate the most rarified region by choosing an orbit paihit
[=(x™,y())] that has the largest distance from its neares
orbit point P2 *(z9) for A=A, . The two sequencex (¥}
and{y™}, listed in Table I, converge geometrically to their
limit values x* and y* with the 1D asymptotic ratiox

FIG. 6. Power spectrunP®(w) of level 8 for A=A
§=0.575 154 223 350).

consider the power spectruf®(w) of level 8 shown in
Fig. 6. The average height of the peaks of ktregeneration

i is given b
(=—2.502--.), respectively: g y
X(k)_x(k71> y(k)_y(kfl) 2|_1*1
A k=TT o % Ayk= D ok Q- ¢(k)(|): E P(.k) (21
X —-X y -y 2(-1) & lj -

17

The values of x* (=0.350686..) and y* s of interest whether or not the sequence of the ratios of

sequences af® andy®, respectively.
We finally study the power spectra of th&-Reriodic or- ‘ ‘ ‘
bits at the period-doubling bifurcation poinés,. Consider 28N =¢"(1)1M(1+1), (22)
the orbit of level k whose period isq=2% {z{
=(x® y®), m=0,1,... g—1}. Then its Fourier compo- converges. The ratios are listed in Table Ill. They seem to
nent of this Z-periodic orbit is given by approach a limit value, 2=21, which also agrees well with
that (=20.96 - -) for the 1D mapg21].

y
dm=o V. SUMMARY
wherew;=2mj/q, andj=0,1,... g—1. The power spec-  We carried out a detailed investigation of bifurcations as-
trum P(ks(wj) of level k defined by sociated with resurrections of the inverted state through nu-
merical calculations of its Floquet multipliers. It was found
PR (w))=2"(w))|? (19 that its stabilizations occur via alternating reverse subcritical

_ pitchfork and period-doubling bifurcations, while its destabi-
has discrete peaks at=w;. In the power spectrum of the |izations take place through alternating normal supercritical
next (k+1) level, new peaks of the&(+ 1)th generation ap-
pear at odd harmonics of the fundamental frequenay, TABLE Ill. Sequence BX(1) [=a®(1)/¢®(1+1)] of the

_ : K+1) (i ;
=2m(2j+ 1)/2 ) (i=0,... 2-1). To classify the con- (4105 of the successive average heights of the peaks in the power
tributions of successive period-doubling bifurcations in thegpectra

power spectrum of levelt, we write

K |
k 207D-1
4 5 6 ’
PU=Pod(w)+ 2 X Pfo(w=—w), (20
= S 6 34.7 24.6
7 34.0 24,5 21.7
whereP{Y is the height of thgth peak of the th generation 8 33.9 24.0 21.7 215

appearing atv= w; (=27(2j +1)/2). As an example, we
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